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About

• These slides help explain key concepts about the rapidly evolving field of Immuno-Oncology (I-O). 
The information is separated into 5 topics that are color-coded for clarity
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Topic 2. Revealing the potential of the immune system in cancer

Topic 3. Discovering the possibilities of I-O biomarkers

Topic 4. Evolving clinical expectations in I-O

Topic 5. Realizing the potential of I-O research

Topic 1. Essential principles of immunology



Topics covered
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• Differentiating self 
from nonself

• Innate and adaptive 
immunity as 
complementary 
responses

• Innate immunity is rapid 
and antigen-independent

• APCs act as primary 
messengers between 
innate and adaptive 
immunity

• Adaptive immunity is 
durable and 
antigen-dependent

• T cells migrate 
throughout the body in 
search of antigens

• Select cells of the 
immune system

Essential principles 
of immunology
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• Biomarkers in I-O 
research and guiding 
clinical decisions

• I-O biomarkers as a 
dynamic and diverse 
subset of biomarkers

• Investigational I-O 
biomarkers

• Multiple I-O biomarkers 
needed to provide a 
more precise 
representation 
of the TME

Discovering the 
possibilities of I-O 

biomarkers
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• Introduction to the tumor 
microenvironment (TME) 
and the immune response

• Key stages of the 
antitumor immune 
response

• Evasion of immune 
activity by tumor cells

• Four modes of action 
that may enhance or 
inhibit the immune 
system’s ability to fight 
off cancer

• Select pathways that 
modulate tumor 
detection, 
immunosuppression, 
effector cell function, 
and/or promote tumor 
cell growth

Revealing the 
potential of the immune 

system in cancer
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• I-O is a different 
approach that fights 
cancer by targeting the 
immune system

• Immune responses have 
the potential to deepen 
and sustain over time

• Resistance to 
immunotherapy

• Pseudoprogression
• Endpoint considerations 

for I-O research
• Immune-mediated 

adverse reactions

Evolving clinical 
expectations in I-O
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• Depth of evidence for 
the immune response 
to cancer

• Broad potential of 
I-O research

• I-O research is 
constantly evolving

Realizing the potential 
of I-O research
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Topic 1: 
Essential principles 
of immunology
The immune system identifies nonself invaders through both 
innate and adaptive immunity.
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Differentiating self from nonself is a hallmark of the immune 
response

• The immune system is a network of tissues, cells, and signaling molecules that work to protect the body by recognizing 
and attacking foreign cells (nonself), while seeking to minimize the damage to healthy cells (self)1,2

• Antigens, small molecules, or peptides capable of eliciting an immune response, are key elements in the process of 
distinguishing self from nonself1

• Inactive T cells search for nonself antigens by transiently 
binding to antigens presented by antigen-presenting 
cells (APCs)3

• Immune cells learn to overlook self antigens from normal cells 
to prevent autoimmunity2

• Although originating from normal cells, tumor antigens can be 
recognized as nonself and activate cytotoxic T cells1,4,5

• Neoantigens are a type of tumor antigen that arise from self 
proteins that have been mutated or modified, making them 
unique to the tumor4,5

Essential principles of immunology
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Innate and adaptive immunity are complementary responses

• The immune system identifies nonself invaders through both innate and adaptive immunity. Activated through distinct 
and often complementary mechanisms, innate and adaptive immunity deploy different effector cells to attack and 
destroy abnormal/foreign cells such as cancer1
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• The innate immune response is rapid, while the adaptive immune 
response is not as immediate but can produce a durable response 
through the development of memory cells, including memory 
T cells1,6

• As the immune response continues to expand, some cytotoxic T cells 
mature into memory T cells that may provide long-term immune 
protection, even if the original stimulus is no longer present7-9

Essential principles of immunology



Innate immunity is rapid and antigen-independent
Innate immunity, the body’s first line of defense, is non-specific and independent of antigens, allowing for the 
rapid identification and elimination of foreign threats.1 The primary effector cells of the innate immune response, 
NK cells, continually scan the body for abnormal cells to attack.1,10,11*
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*Numerous cell types are involved with the innate immune response, including macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, NK cells, and lymphocytes (T cells).1

NK cells express receptors that interact with activating and inhibitory signals from normal and abnormal cells. The 
balance of these signals determines NK cell behavior.12
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APCs act as central messengers between innate and adaptive 
immunity

• APCs are innate immune cells that can act as 
central messengers between the innate 
and adaptive immune responses.1 Tumor cell 
death, which can be initiated by the innate 
immune system, can release signaling 
molecules, such as DNA, ATP, and proteins. 
These factors may cause APCs to initiate an 
adaptive immune response13-16

• DNA or ATP released by dying tumor cells 
stimulates APCs to produce proinflammatory 
cytokines, through the inflammasome, which 
can support antitumor function and survival 
in activated T cells involved in the adaptive 
immune response16-19

• Proteins released by dying tumor cells can 
be processed by APCs into tumor 
antigens.20,21 APCs present these antigens to 
T cells, priming them to recognize tumor 
cells1,21
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Unlike the innate immune response, adaptive immunity is not immediate, but can be sustained through a 
memory cell response, which includes memory T cells.1,8

Adaptive immunity is durable and antigen-dependent

• Adaptive immunity is antigen-dependent and able to produce a durable response.1 Cytotoxic 
T cells, the primary effector cells of the adaptive immune response, can be activated by the 
detection of tumor antigens.1,22 Once activated, cytotoxic T cells proliferate, migrate to the 
location of the antigen, infiltrate it, and directly initiate cell death23
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T cells migrate throughout the body in search of antigens

• To identify and eliminate tumor cells, cytotoxic and memory T cells must be able to scan peripheral tissues in search of 
a unique activating antigen23,24
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• To make this possible, activated T cells upregulate factors that enable
them to recognize threats and migrate through blood vessel walls, into 
affected tissues25,26

• T-cell migration occurs across non-lymphoid tissues, with documented 
trafficking to even particularly selective tissues such as the eye and 
brain27-33

• After the activated cytotoxic T cell population diminishes, memory T cells 
remain capable of trafficking to surrounding tissues in the event of 
antigen reoccurence28

Essential principles of immunology



Select cells of the immune system
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Non-effector cells:

Directly or indirectly modulate the cytotoxic effector T-cell response. 
These cells cannot induce tumor cell death on their own. 

Effector cells:

Actively involved in the destruction of foreign 
pathogens and cancer. 

Essential principles of immunology

NK cells are the primary effector cells of the innate immune 
response. NK cells express activating and inhibitory receptors that 
interact directly with signals from other cells. NK cells do not 
require antigen-bound MHC to identify and attack abnormal cells.1,24

Cytotoxic T cells are the primary effector cells of the adaptive 
immune response. Following activation by recognition of antigens 
presented by MHC class I molecules, T cells directly kill pathogens 
and abnormal cells that express the respective antigen.24,34

Memory T cells are derived from activated cytotoxic T cells and 
represent a long-lived population of antigen-experienced cells that 
can rapidly respond upon antigen reocurrence.1,35

Tregs are a unique subset of T cells that modulate the activation 
of other effector T cells to inhibit the immune response.24,37

TAMs are cells derived from the macrophage lineage that are 
recruited to the tumor microenvironment to promote tumor cell 
survival by driving immunosuppression.38,39

MDSCs are cells derived from the myeloid lineage that function to 
suppress T-cell responses.38

Stromal cells play an integral role in supporting the homeostasis 
of normal tissues and suppressing immune response in tumors.40,41

APCs (such as dendritic cells) recognize, process, and present 
antigens to T cells through MHC molecules.25,36,37



Topic 2: 
Revealing the potential of 
the immune system in cancer
The ability of the immune system to detect and destroy cancer 
is the foundation of Immuno-Oncology research.



Introduction to the tumor microenvironment and the immune 
response 

• Innate and adaptive immunity act as a 
complementary network of self-defense 
against foreign threats such as pathogens 
and cancer.1

• The immune system is able to recognize 
foreign threats (nonself) as distinct from 
normal cells (self).2-4 Despite originating 
from normal cells, tumor cells can be 
recognized as nonself through the 
production of tumor antigens.3,5
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Antitumor activity of the innate and adaptive 
immune responses

Revealing the potential of the immune system in cancer

Adaptive immune response

Innate immune response

• The adaptive immune response is antigen-specific and 
produces durable responses1,7

• Once activated, it can be sustained through immune 
memory13

• Cytotoxic T cells are effector cells of the adaptive 
immune system1

• The first line of defense, it rapidly identifies and 
attacks tumor cells without antigen specificity1,6,7

• It recognizes activating and inhibitory signals from 
target cells to distinguish self from nonself8-10

• Natural killer (NK) cells are the main effector cells of 
innate immunity11,12

The antitumor activity of NK cells and 
cytotoxic T cells is regulated through a 
network of activating and inhibitory 
signaling pathways4,14,15:

ACTIVATING
Pathways that trigger 

immune responses 

INHIBITORY
Pathways that counterbalance 

immune activation

The balance between activating and 
inhibitory pathways normally enables the 
immune system to attack tumor cells, 
while sparing healthy cells.15



Key stages of the antitumor immune response

• In both the innate and adaptive immune responses, immune cells have the potential to recognize and eliminate tumor 
cells. There are 3 principal stages in this process:
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• The innate immune system rapidly 
identifies and attacks tumor cells

• Tumor cell death releases tumor 
antigens, which can activate the 
cytotoxic T cells of the adaptive 
immune system16,17

• Tumor antigens and other factors 
attract immune cells to the tumor site, 
where they invade and attack17

• Activated cytotoxic T cells recognize 
tumor cells as the source of the antigen 
and target them for elimination17

Presentation Infiltration Elimination

Revealing the potential of the immune system in cancer



Tumor cells can evade and suppress immune activity

• The complex network of activating and inhibitory pathways enables the antitumor immune response to detect and eliminate tumor cells at any point in tumor 
development.18 The success of these strategies determines the ability of immune cells to react to the tumor.19

• The tumor microenvironment consists of different cell types that can help tumor cells evade antitumor immune activity.20,21 As tumors evolve, they can influence 
the activation and composition of cells within the tumor microenvironment.22 Depending upon their degree of immune cell infiltration, tumors are defined on a range 
from noninflamed to inflamed.19,23
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Stages of the antitumor response

Characterized by poor presence of immune cells19,21

• Impaired ability to present tumor antigens to T cells or secrete key factors (chemokines)19,24

• Less able to direct tumor-specific T cells to the tumor and promote T cell infiltration, 
ultimately preventing tumor cell elimination25,26

• Ongoing research aims to promote inflammation within tumors to increase susceptibility to 
antitumor immunity

Characterized by presence of immune cells19,25,27-29

• Antigen presentation and expression of chemokines allow for infiltration of activated 
cytotoxic T cells25,30-32 

• However, tumor cells may increase their expression of inhibitory proteins to prevent 
elimination by cytotoxic T cells26,33



Multiple pathways may be leveraged for tumor detection and 
elimination

• NK cells and cytotoxic T cells can migrate to the tumor site, and are key to destroying the tumor cells40

• These effector cells are regulated through a network of activating and inhibitory signaling pathways, with activating 
pathways triggering an immune response and inhibitory pathways providing a natural counterbalance to immune 
activation (eg, checkpoint pathways)4,14,15

• In addition, tumor-intrinsic signaling plays a key role in regulating the immunosuppressive tumor microenvironment and 
tumor immune escape39

17

Pathways may be categorized into the following functions17,34-36

Tumor-intrinsic pathways38,39

Tumor cell recognition37

Effector cell function37

Immunosuppression21,27
1 2

3 4
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Empowering the immune system to fight cancer

• The immune system uses a network of signaling pathways to detect and eliminate tumor cells.4,14,41,42 Ongoing 
Immuno-Oncology research aims to understand how modulating these pathways may overcome the mechanisms of tumor 
evasion to restore the body’s natural ability to fight cancer. Pathways may be categorized in the following functions:

18

Tumor cell recognition 

Tumors can adapt mechanisms to 
evade immune detection. Leveraging 
pathways, including those involved in 

antigen presentation and 
phagocytosis, may promote better 

tumor cell recognition.37,43

Immunosuppression

Some tumors can avoid destruction by 
thriving in an immunosuppressive 
environment and dampening the 
immune response. Modulating 

pathways that regulate 
immunosuppressive activity may 
increase anti-tumor activity.44,45

Effector cell function

Various components of the immune 
system and tumor microenvironment 
regulate an effector cell’s ability to 

eliminate tumors. Modulating 
pathways involved in the regulation of 

effector cells may enhance their 
activity.37,46

Tumor-intrinsic pathways

Various signaling and metabolic 
pathways intrinsic to tumor cells can 
drive oncogenesis and tumor growth. 
Blocking these pathways may promote 

tumor cell death. 38,39

Revealing the potential of the immune system in cancer



Pathways may enhance or inhibit the immune system’s ability 
to fight off cancer via four different modes of action
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*Targets are listed by primary mechanism. Secondary mechanisms may exist.

Revealing the potential of the immune system in cancer

TUMOR CELL 
RECOGNITION47-55

Antigen presentation

NLRP3 STING TLR8

Phagocytosis of tumor cells

SIRPα

Antibody-dependent 
tumor-cell death

FucGM1

IMMUNOSUPPRESSION56-66

Immunosuppressive 
effect of Tregs

CTLA-4

Immunosuppressive 
myeloid cells

CCR2/5 IL-8

Immune exclusion

TGFβ1 & 3

EFFECTOR CELL FUNCTION33,56,57,67-94

Inhibitory immune 
checkpoints

Effector cell activation, 
proliferation, and cytotoxicity

LAG-3

TIM-3 TIGIT*

CTLA-4 PD-1

IL-2 OX40

IL-12 SLAMF7

Immunosuppressive 
metabolic pathways

IDO1 AHR

Tumor antigen to direct 
T cell activity

PSCA

TUMOR-INTRINSIC 
PATHWAYS95-103

Protein degradation 
pathways

Ubiquitin proteasome pathway

Androgen receptor degradation

Epigenetic drivers 
of oncogenesis

NKG2A

BET LSD1



Select pathways that modulate tumor detection (1/2)

• Current research is investigating modulation of pathways, including those involved in antigen presentation and 
phagocytosis, to promote better tumor cell recognition:37,43
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NLRP3 is a protein expressed in APCs such as DCs, monocytes, and macrophages.47 NLRP3 is involved in the assembly 
of the NLRP3 inflammasome, a protein complex that is a key mediator of innate immunity and the priming of T cells.48,104

Preclinical data suggest that the NLRP3 inflammasome can activate NK cells and initiate the priming of T cells, which 
promotes tumor inflammation and enhances antitumor function.48,104,105

STING is an intracellular protein expressed in APCs, such as DCs, which serves as an innate immune activator that 
stimulates APCs to drive cytotoxic T-cell activity.49,50 STING is triggered when an intracellular-sensing protein detects DNA 
from pathogens or dying tumor cells.106,107

Preclinical data suggest that activation of STING can increase priming of T cells, leading to increased T-cell activation 
and an inflamed tumor microenvironment.107-110  Furthermore, mouse models indicate that STING activation, along with 
blockade of immune checkpoint receptors, may synergistically promote the antitumor immune response.111,112

Revealing the potential of the immune system in cancer



Select pathways that modulate tumor detection (2/2)

FucGM1 is a ganglioside, or cell surface glycosphingolipid, that enables cell-cell recognition, adhesion, and signaling 
transduction.55 While FucGM1 is mostly expressed in neural tissue, with limited expression in normal tissues, it is also 
highly expressed on the surface of certain tumor cells.55,113,114

Preclinical data suggest that antibodies targeting FucGM1 promote compliment activation. FucGM1 antibodies may 
impart synergistic cytotoxic effects with other signaling pathways.55

Revealing the potential of the immune system in cancer

• Current research is investigating modulation of pathways, including those involved in antigen presentation and 
phagocytosis, to promote better tumor cell recognition37,43:
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Select pathways that modulate immunosuppression (1/2)

• Current research is investigating modulation of pathways that regulate immunosuppressive activity in order to increase 
anti-tumor response 44,45:

CTLA-4 is an immune checkpoint receptor on activated T cells that inhibits their activation.56,73 Tumor cells use the 
CTLA-4 pathway to suppress initiation of an immune response, resulting in decreased T-cell activation and ability to 
proliferate into memory T cells.35,115 CTLA-4 signaling diminishes the ability of memory T cells to sustain a response, 
damaging a key element of durable immunity.35,115

Preclinical data suggest that treatment with antibodies specific for CTLA-4 can restore an immune response through 
increased accumulation, function, and survival of T cells and memory T cells and depletion of regulatory T cells.34-36

One recent approach aims to improve the specificity of CTLA-4 blockade by using pro-antibodies, antibodies masked 
with a protein that can be removed by enzymes that are active primarily at the tumor site.118,119

Revealing the potential of the immune system in cancer

CCR2 and CCR5, regulate the recruitment of immunosuppressive cells through the stroma62,120. CCR2 and CCR5 are 
both expressed on the surface of T cells, Tregs, monocytes, MDSCs, and TAMs.59-61,121-123

Preclinical data suggest that depletion or blockade of CCR2 and CCR5, individually or in combination, has been shown to 
potentially decrease the infiltration of MDSCs, TAMs, and Tregs to the tumor microenvironment.124-128
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Select pathways that modulate immunosuppression (2/2)

• Current research is investigating modulation of pathways that regulate immunosuppressive activity in order to increase 
anti-tumor response44,45:
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IL-8 is a chemokine produced by macrophages, monocytes, and stromal cells that promotes the recruitment of 
immunosuppressive MDSCs and activates the angiogenic response to generate new blood vessels during the normal 
healing process.63,64,129,130 Both tumor and tumor-associated stromal cells can upregulate production of IL-8, causing 
MDSCs to migrate to the tumor microenvironment where they suppress the antitumor immune response.64,130-133 

Preclinical data suggest that blockade of IL-8 signaling reduces angiogenesis and the recruitment of CXCR1- and 
CXCR2-expressing MDSCs to the stromal barrier and tumor microenvironment.64,134,135

Revealing the potential of the immune system in cancer



Select pathways that modulate effector cell function (1/5)

• Current research is investigating modulation of pathways involved in the regulation of effector cells in order to enhance 
their activity37,46:

PD-1 is an immune checkpoint receptor on cytotoxic T cells that plays a key role in T-cell exhaustion and prevention 
of autoimmunity.74-76 Tumor-infiltrating T cells across solid tumors and hematologic malignancies display evidence of 
exhaustion, including upregulation of PD-1.76

Preclinical data suggest that PD-1 blockade reinvigorates exhausted T cells and restores their cytotoxic immune 
function.136 Inhibiting both PD-1 ligands (PD-L1 and PD-L2) may be more effective at reversing T-cell exhaustion than 
inhibiting PD-L1 alone.78

Revealing the potential of the immune system in cancer

CTLA-4 is an immune checkpoint inhibitor that, in addition to being expressed on activated T cells, is also found on 
Tregs, where it is a key driver of their ability to suppress T-cell activity and counterbalance excessive immune 
activation.15,41,56 Continuous expression of CTLA-4 on Tregs is critical for their suppressive activity.57,137

Preclinical data suggest that increased depletion of Tregs can improve cytotoxic T-cell activation and antitumor activity. 
One recent approach to regulate the degree of immune activity and increase the depletion of Tregs uses a specific type 
of CTLA-4 antibody with a modified Fc region known as a fucosylated antibody. This fucosylated antibody can bind to 
Tregs, identifying them for elimination by other immune cells.34-36,138
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Select pathways that modulate effector cell function (2/5)

• Current research is investigating modulation of pathways involved in the regulation of effector cells in order to enhance 
their activity37,46:
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TIGIT is an immune checkpoint receptor expressed on the surface of cytotoxic, memory, and Tregs, as well as NK 
cells.71,144 On cytotoxic T cells and NK cells, interaction of TIGIT with either of its ligands suppresses immune 
activation.71,144 When TIGIT is expressed on Tregs, however, this interaction enhances their ability to suppress the 
immune response.145

Preclinical data suggest that the inhibition of TIGIT alone or in combination with other checkpoint inhibitors increases 
the proliferation and function of cytotoxic T cells.72,145-147

Revealing the potential of the immune system in cancer

LAG-3 is an immune checkpoint receptor on the surface of both activated cytotoxic and regulatory T cells 
(Tregs).67,68,139 When bound to the antigen-MHC complex, LAG-3 can negatively regulate T-cell proliferation and the 
development of lasting memory T cells.140 Repeated exposure to tumor antigen causes an increase in the presence and 
activity of LAG-3, leading to T-cell exhaustion.141,142

Preclinical data suggest that when the PD-1 pathway is blocked, LAG-3 may be upregulated to maintain tumor growth.143

Research is ongoing to understand how dual inhibition of LAG-3 and other checkpoint pathways may synergistically 
increase T-cell antitumor activity compared with inhibition of either pathway alone.



Select pathways that modulate effector cell function (3/5)

• Current research is investigating modulation of pathways involved in the regulation of effector cells in order to enhance 
their activity37,46:
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Revealing the potential of the immune system in cancer

TIM-3 is an immune checkpoint receptor involved in the suppression of both innate and adaptive immune cells.69,148 It is 
expressed on the surface of a wide variety of immune cells, including cytotoxic T cells, Tregs, NK cells, and some APCs 
such as DCs.69,70 PS or HMGB1 interactions with TIM-3 on tumor-infiltrating DCs may lead to impaired ability of DCs to 
activate T cells and promote inflammation.148-150

Preclinical data suggest that the blockade of TIM-3 can rescue NK-cell activity, promote tumor antigen processing, and 
reinvigorate exhausted T cells, restoring their proliferation and function.69,151,152 TIM-3 is often co-expressed with other 
immune checkpoint receptors. Preclinical studies suggest that the co-blockade of TIM-3 with another immune checkpoint 
receptor may further reinvigorate exhausted T cells.151,153,154

SLAMF7 is an activating receptor on the surface of NK cells and other immune cells.91 When engaged, SLAMF7 activates 
NK cells, the rapid responders of the immune system and the body’s first line of defense against cancer.6,155

Continuous activation of NK cells through pathways like SLAMF7 may initiate the development of long-term 
immunity.11,16,156

Preclinical data suggests that engagement of SLAMF7 may facilitate the interaction with NK cells to mediate the killing 
of tumor cells by promoting antibody-dependent cellular cytotoxicity (ADCC) through both CD16-dependent and 
–independent mechanisms157,158



Select pathways that modulate effector cell function (4/5)

• Current research is investigating modulation of pathways involved in the regulation of effector cells in order to enhance 
their activity37,46:

27

IL-2 is a cytokine that binds to an activating receptor expressed on the surface of activated cytotoxic T cells, Tregs, 
NK cells, and other types of T cells.84-86 The interaction of IL-2R and its ligand, IL-2, promotes the activation and 
proliferation of various immune cells.86,159

Preclinical data suggest that preferential binding to the dimeric IL-2R directly activates and expands effector T cells and 
NK cells over immunosuppressive Tregs, increasing the tumor-infiltrating lymphocyte proliferation and recruitment to the 
tumor microenvironment.85,160,161

Revealing the potential of the immune system in cancer

OX40 is an activating receptor on the surface of activated cytotoxic T cells and regulatory T cells (Tregs).162-163 OX40 
both activates and amplifies T cell responses, helping to create a tumor microenvironment more favorable to the 
antitumor immune response.164-166 

Preclinical data suggest that OX40 signaling increases the number and activity of cytotoxic T cells and curtails the 
immunosuppressive impact of Tregs. 164-166



Select pathways that modulate effector cell function (5/5)

• Current research is investigating modulation of pathways involved in the regulation of effector cells in order to enhance 
their activity37,46:

28
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IDO1, an enzyme expressed in tumor cells and APCs, metabolizes tryptophan, an amino acid that is essential for cell 
survival, into immunosuppressive kynurenine.80,81,167 Kynurenine normally acts as a counterbalance to suppress T-cell 
function and prevent overactivation of the immune response.168,169 Tumors can hijack this immunosuppressive process and 
evolve to increase IDO1 expression in both tumor cells and APCs.80,170-172

According to preclinical studies, IDO1 inhibition may reduce immunosuppressive Treg numbers and restore cytotoxic 
T-cell function.173,174 Preclinical data also suggest that IDO1 inhibition alone or in combination with  other checkpoint 
pathways, can reduce Treg accumulation and improve antitumor immune response.173-177



Select tumor cell pathways (1/2) 

• Current research is investigating modulation of various signaling and metabolic pathways intrinsic to tumor cells in order 
to promote tumor cell death:
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LSD1 is a demethylating enzyme that potentially plays a role in nucleosome remodeling, which may regulate genes 
critical to stem cell differentiation and cancer development.183-185 LSD1 binds to enhancer and promoter regions of genes 
and regulates stemness, cell motility, and differentiation, among other critical processes in cells.186-188

Preclinical data suggest that inhibition of LSD1 elicits anti-tumor immunity characterized by T cell infiltration and newly 
obtained immunogenicity in previously low or non-immunogenic tumors. Combinatorial use with checkpoint inhibitors 
suggests a synergistic effect and currently being studied.189

Revealing the potential of the immune system in cancer

BET is a family of epigenetic reader proteins that recognizes acetyl groups in the histone tail and is involved in 
recruiting factors to activate gene transcription.178-180 BET can upregulate the transcription of oncogenes such as 
c-Myc.178-181

Preclinical studies suggest that inhibition of BET can suppress expression of PD-L1, which may lead to increased activity 
of cytotoxic T cells.180,182 Preclinical studies also suggest that inhibition of BET, in combination with other checkpoint 
pathways, may have greater antitumor activity than blockade of BET alone.182



Select tumor cell pathways (2/2) 

• Current research is investigating modulation of various signaling and metabolic pathways intrinsic to tumor cells in order 
to promote tumor cell death:
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BCR-ABL is a tyrosine kinase fusion protein, formed as a result of the chromosomal translocation that produces the 
Philadelphia chromosome.190 BCR-ABL is constitutively active in cancers such as CML, ALL, and occasionally AML.191-193

BCR-ABL expression promotes tumor-cell proliferation and increases resistance of tumor cells to apoptosis.194

Preclinical evidence suggests that inhibiting BCR-ABL expression may suppress anti-apoptotic activity. Preclinical studies 
also suggest that the inhibition of BCR-ABL and other signaling  pathways, such as MAPK, may enhance tumor cell 
regression and promote an antitumor immune response.195

Revealing the potential of the immune system in cancer
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Immune pathways combine to refine response
Revealing the potential of the immune system in cancer

• Activating and inhibitory signaling pathways 
combine to maintain immune balance by 
regulating the 3 key stages of the immune 
response: presentation, infiltration, and 
elimination.74,196,197 

• Once an immune response is initiated, each 
stage can potentiate or limit the activity of 
subsequent stages.198

Modulating signaling pathways in combination may enhance the 
antitumor immune response, as suggested by preclinical data.199-203
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Topic 3: 
Discovering the possibilities 
of I-O biomarkers
Research in the field of I-O biomarkers seeks to characterize the 
relationship between the immune system, the tumor and its 
microenvironment, and the host.



Biomarkers in I-O research

• For each patient, the interaction of the immune 
system, cancer, and therapy is complex and 
unique.1

• Biomarkers are biologic molecules, cells, or 
processes found in tissues or body fluids (such as 
blood) that are a sign of a normal or abnormal 
process or disease.2,3

Exploring predictors of response: immune biomarkers

A goal of I-O biomarker testing is to help enable a more personalized approach to treatment 
by identifying patients who are likely to respond to specific immunotherapies.1,4,5
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Biomarkers can help guide clinical decisions

• I-O biomarkers are a class of biomarker that can help evaluate an active antitumor immune response within 
the body.6 They can be prognostic, predictive, or pharmacodynamic7-10:

Prognostic biomarkers may identify the likelihood of a clinical event, such as disease progression, disease recurrence, 
or death, independent of the therapy received.7,8

Predictive biomarkers may identify whether individuals are more likely to experience a favorable or unfavorable response to treatment 
(eg, a mutation in the EGFR, BRAF, or KRAS genes).7,8,11

PROGNOSTIC BIOMARKERS 

PREDICTIVE BIOMARKERS 

Pharmacodynamic biomarkers may show that a biologic response has occurred in an individual who has received treatment.8,9

PHARMACODYNAMIC BIOMARKERS 
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I-O biomarkers are a dynamic and diverse subset of biomarkers

Tumor antigens are recognized as nonself or 
foreign by the host immune system and can 
initiate the adaptive immune response

Cells and proteins within the tumor and its 
microenvironment are associated with inhibition 
of the antitumor immune response 

Inflamed tumors show evidence of immune-cell 
infiltration and activation in the tumor 
microenvironment

• MSI-H/dMMR

• TMB

• LAG-3 • Tregs 

• MDSCs

• PD-L1         • PD-L2         • TILs

• Inflammation gene signatures

TUMOR ANTIGENS5,12-14

IMMUNE SUPPRESSION1,5,14

INFLAMED TUMORS5,14-15

• I-O biomarker research aims to further characterize the unique interplay between the immune system and 
tumor cells, in the following categories:

*Effector T cell or NK cell.
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Investigational I-O biomarker: tumor antigens

• Tumor mutational burden (TMB): The collective number of somatic 
(acquired) mutations in the tumor genome19,20

• Microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR): 
Indicators of genomic stability21,22

• Proteins released by dying tumor cells can be processed by APCs into tumor antigens. APCs present these antigens to 
T cells, priming them to recognize tumor cells.16-18

Several I-O biomarkers related to tumor antigens are currently under investigation.
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TMB may be a surrogate for neoantigens

• Neoantigens are a class of tumor antigen derived from 
the unique mutations in tumor DNA that differentiate 
tumors from normal tissue. Neoantigens are thus 
unique to the tumor and recognizable as nonself by the 
immune system. They can initiate the adaptive 
immune response, a process known as immunologic 
priming.1,12,13,23,24

Tumors with a high burden of neoantigens are more sensitive to immunotherapy, indicating that neoantigens may be 
a potential I-O biomarker.25 As immunogenic neoantigens can be challenging to identify directly, TMB may potentially 

be used as a surrogate to indirectly assess neoantigen load.1,24
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Investigational I-O biomarker: tumor mutational burden

• Tumor mutational burden (TMB) is defined as the number of 
somatic (acquired) mutations in the tumor genome.19,20 The 
number of mutations can vary across different tumor types.24,26,27

High TMB has been shown to be associated with infiltration of 
cytotoxic T cells into the tumor microenvironment, supporting its 
use as a neoantigen surrogate.28,29

• TMB is assessed using next-generation sequencing (NGS), a 
method in which tumor DNA can be read and analyzed for 
mutations against a reference genome.30,31

TMB is an emerging biomarker that may predict the likelihood of an immune response against cancer cells, 
which could help inform individualized treatment across tumor types.1,32
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Investigational I-O biomarker: inflamed tumors

• Inflamed tumors show evidence of immune-cell infiltration and activation in the tumor microenvironment.15,33

• Programmed death ligand 1/programmed death ligand 2 (PD-L1/PD-L2): Ligands for 
the immune checkpoint receptor PD-1 expressed on the surface of immune cells, 
including cytotoxic T cells34

• Tumor-infiltrating lymphocytes (TILs): Immune cells that enter the tumor and its 
microenvironment to mediate an antitumor immune response35,36

• Inflammation gene signature: Specific type of gene expression profile providing a 
holistic view of cellular function37

PD-L1
TUMOR 
CELL

PD-L2

PD-1

T CELL
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Several I-O biomarkers related to inflamed tumors are currently under investigation.



Investigational I-O biomarker: inflammation gene signatures

Inflammation gene signatures are being investigated as a potential I-O biomarker.

• Inflammation gene signatures are a specific type of gene 
expression profile. GEP measures the expression of mRNA 
across thousands of genes. This can create a distinct 
molecular profile (or gene signature), providing a holistic 
view of cellular function. Inflammation gene signatures vary 
across tumor types and may be a powerful diagnostic 
tool.35,36,38
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Investigational I-O biomarker: immune suppression markers

• Lymphocyte-activation gene 3 (LAG-3): Immune checkpoint receptor expressed on 
activated cytotoxic T cells and Tregs41,42

• Regulatory T cells (Tregs): Cells that suppress the immune response by modulating the 
activation of effector T cells43,44

• Myeloid-derived suppressor cells (MDSCs): Cells recruited to the tumor 
microenvironment to suppress effector cell responses45

Several I-O biomarkers related to immune suppression markers are currently under investigation.

• Cells and proteins within the tumor and its microenvironment can suppress T-cell activation, promote T-cell exhaustion, 
or activate regulatory T cells (Tregs).39,40

41

Exploring predictors of response: immune biomarkers



Multiple I-O biomarkers may be needed to provide a 
more precise representation of the tumor microenvironment

Therefore, the goal of I-O biomarker development is to enable a more personalized approach to treatment 
by identifying patients who are likely to respond to specific immunotherapies.1,47

• As I-O biomarkers are dynamic and complex, the presence or absence of any single I-O biomarker may not provide 
a complete understanding of the diverse interactions occurring within the tumor microenvironment.4,46 Evaluating 
multiple I-O biomarkers in combination may provide a more accurate and comprehensive assessment of immune 
status.4
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Topic 4: 
Evolving clinical expectations 
in I-O
Immuno-Oncology (I-O) is a different approach to cancer 
treatment. With this new approach come unique considerations 
and distinctive characteristics that continue to be researched.



I-O is a different approach that fights cancer by targeting
the immune system

• Treatment approaches currently approved to fight cancer include chemotherapy, radiation, targeted therapy, and 
immunotherapy. Chemotherapy, radiation, and targeted therapy are all directed toward killing tumor cells.1-4 In contrast, 
I-O seeks to activate the body’s natural immune response to fight cancer.5 This is a fundamentally different approach to 
cancer treatment.
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Immune system Cancer cell

With an I-O approach come unique considerations 
and distinctive characteristics that continue to be 
researched, such as:
• Immune responses having the potential to 

deepen and sustain over time
• Resistance to immunotherapy, which can be 

present at the start of treatment or form 
over time

• Unique patterns of response, such as 
pseudoprogression

• Comprehensive endpoint considerations
• Immune-mediated adverse reactions
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Immune responses have the potential to deepen and sustain 
over time
• The immune response evolves and expands over time by constantly recognizing and remembering tumor 

antigens. This ability—to propagate and perpetuate—suggests the adaptive nature of the immune response.
Immune responses are dynamic and have the potential to improve and deepen over time.6-8
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As the immune response continues to expand, some cytotoxic T cells mature into memory T cells 
that may provide long-term immune protection, even if the original stimulus is no longer present.8-10
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Resistance to immunotherapy can be present at the 
start of treatment or form over time

• Advances in immunotherapy have resulted in enhanced antitumor responses. However, as tumors evolve over time, their 
influence on the tumor microenvironment results in the development of treatment resistance and disease progression 
during or after therapy.11,12
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Tumors may have primary resistance or acquired resistance to immunotherapy

Primary resistance 
• Occurs when a tumor does not respond to 

immunotherapy from the beginning of treatment13

• May occur due to modulation of gene expression or 
pathways in tumor cells that may prevent immune 
response14

Exploring the key biological mechanisms underlying resistance to 
immunotherapy will inform appropriate treatment options for patients. 

Acquired resistance 
• May occur when a tumor initially responds to 

immunotherapy but then fails to respond after a 
period of time13

• May occur due to loss of T-cell function, lack of 
T-cell recognition, or development of escape       

mmutations in tumors13
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Pseudoprogression (1/2)

Pseudoprogression may reflect development of antitumor immunity 

• The nature of the antitumor immune response can create the appearance of disease progression, either as tumor growth 
or appearance of new lesions.47,48 This is known as pseudoprogression. Pseudoprogression does not reflect tumor cell 
growth but may be misclassified as disease progression15-18

• Tumors may appear to grow, or new lesions may appear when immune cells infiltrate the tumor site.15 Due to the time 
required to mount an adaptive immune response, pseudoprogression may also reflect continued tumor growth until a 
sufficient response develops.15,19
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Pseudoprogression
(nonconventional 
response)

Disease progression

Baseline assessment First assessment Later assessment
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Pseudoprogression (2/2)

Pseudoprogression should be considered until disease progression can be confirmed

• While uncommon, pseudoprogression is an important consideration when evaluating response to Immuno-Oncology 
therapies.19 Histologic confirmation is not always possible, but close monitoring of the following factors may help identify 
pseudoprogression15,18,20:
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Disease progression Pseudoprogression (nonconventional response)
Performance status Deterioration of performance Remains stable or improves

Systemic symptoms Worsen May or may not improve

Symptoms of tumor enlargement Present May or may not be present

Tumor burden

Baseline Increase Initial increase followed by a response

New lesions Appear and increase in size Appear then remain stable and/or subsequently 
respond

Biopsy may reveal Evidence of tumor growth Evidence of immune-cell infiltration

Evolving clinical expectations in I-O



Endpoint considerations for I-O research (1/3)

• The criteria currently used to assess potential benefit of cancer therapies are based on surgery, radiation therapy, and 
chemotherapy.51 However, for Immuno-Oncology, a different way to fight cancer21, a more comprehensive approach to 
endpoint assessment may be needed to recognize potential benefit.22-25

• Response can be assessed by both magnitude (size) and duration (time).26
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Duration of response (DOR) measures the time from initial tumor response to disease progression. As our 
understanding of research continues to evolve, the DOR may prove even more relevant to potential benefit 
than the magnitude of tumor reduction.26,27

Because responses range in both size and duration, these measures should be evaluated 
together to more accurately assess advances in Immuno-Oncology research.26

Overall response rate (ORR) is the proportion of patients with a predefined decrease in tumor burden.26

ORR reflects solely the magnitude of response, and is generally defined as a sum of partial and 
complete responses.26
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Endpoint considerations for I-O research (2/3)

• Overall survival (OS), progression-free survival (PFS), and overall response rate (ORR) are among endpoints used to 
measure outcomes in oncology research.58,59 OS is the gold standard to assess therapeutic benefit when possible.26,27
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Assessing multiple measures 
can illustrate the full scope of 

clinical benefit.23-25,28

Assessment of these measures in combination can provide a broad and comprehensive picture of the difference 
between the investigational arm and the control arm with respect to PFS and OS.23-25,28
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Treatment-free survival (TFS) is the time that patients in a given treatment arm spent off treatment 
prior to initiating a subsequent therapy.29,30 TFS may integrate patient quality of life and toxicities 
experienced during the treatment-free period.29,30

Endpoint considerations for I-O research (3/3)

Other measures may provide additional information regarding clinical benefit of a treatment

51

Patient-reported outcomes (PROs) assess a patient’s HRQOL (physical, psychological, and social) as 
experienced by the patient without the interpretation of a clinician.31,32 The prominence of this 
measure is increasing as both a primary and secondary endpoint.31-33

TFS and PROs are other measures to obtain more information about the clinical benefits of a treatment. 
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Immune-mediated adverse reactions (1/3)

Both traditional cancer therapies and immunotherapy can lead to adverse reactions

• Traditional therapies may affect healthy cells, in addition to the target cells, leading to adverse reactions. 
Immunotherapies can also affect healthy cells resulting in IMARs, a specific type of adverse reaction.6,34-38
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Mechanism of action for each treatment approach leads to adverse reactions

Radiation Chemotherapy Targeted therapy Immunotherapy
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Immune-mediated adverse reactions (2/3)

• I-O therapies that modulate immune pathways may enable the immune system to attack healthy cells along with tumor 
cells resulting in immune-mediated adverse reactions.6,37 The link between immune activation and IMARs is an area of 
ongoing research. T cells, NK cells, and certain immune pathways have been associated with IMARs.39,40
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As research in immunotherapy advances and more data are made available, understanding and appropriate 
management of immune-mediated adverse reactions will evolve.44

T cells: T-cell activation has been linked to 
immune attack on normal cells and the 
development of IMARs in certain organ systems.37

NK cells: Studies have shown that NK cells 
may protect healthy cells from being 
attacked by the immune system.41-43
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Immune-mediated adverse reactions (3/3)

Monitoring and vigilance of IMARs 

• IMARs can occur at any point during and after the treatment continuum. Hence, early detection and management of 
IMARs is essential.45-49

When managing complications of immune-mediated adverse reactions, please consider:

• Patients, caregivers, and physicians should be educated to remain vigilant throughout and after I-O treatment to 
potentially minimize complications, some of which may be life-threatening37,45

• In addition, treatment algorithms are available for use by healthcare providers to assist them in managing 
immune-mediated adverse reactions50,51

• Recent guidelines have been published that provide consensus recommendations for the management of 
immune-mediated adverse reactions.46,50-52 Specific guidance for managing immune-mediated adverse reactions 
for an individual product can be found in the accompanying FDA-approved prescribing information
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As research in immunotherapy advances and more data are made available, understanding and appropriate 
management of immune-mediated adverse reactions will evolve.44
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Topic 5:
Realizing the potential of 
I-O research 
Evidence for tumor immunogenicity across a wide range of solid 
tumors and hematologic malignancies provides the rationale for 
the breadth of Immuno-Oncology (I-O) research across tumor 
types.22



• Both solid tumors and hematologic malignancies are able to induce an immune response that can regulate 
their growth. This ability is known as tumor immunogenicity.1,2 The body can recognize and attack cancer 
through the following stages of immune response:

Depth of evidence for the immune response to cancer

Presentation
Traditionally, immunogenic 

tumors are defined by a high rate 
of mutations.3 These mutations 
create neoantigens that can be 

recognized by the immune 
system, activating an antitumor 

immune response.4

Infiltration
Tumor-infiltrating immune cells 

are present in the tumor 
microenvironment. Their 

presence demonstrates their 
capacity to identify and 

migrate to tumor cells.5-18

Elimination
Early in their development, some 

tumors display evidence of 
spontaneous regression.19 This 

suggests that the immune system is 
able to recognize and eliminate some 
tumor cells, and supports the concept 
that the body’s own immune system 

has the ability to induce an antitumor 
response against cancer.20
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Broad potential of I-O research

There is evidence of immunogenicity across a wide range of malignancies21:

Tumor type*

Evidence for tumor immunogenicity
PRESENTATION

Presence of somatic mutations
INFILTRATION

Evidence of immune-cell infiltration
ELIMINATION

Evidence of spontaneous regression

Bladder3,15  
Breast17,22  
Colorectal16  
Gastric/esophageal8,23  
Glioblastoma3,4,6  
Head and neck9,24  
Hepatocellular13  
Lung3,8  
Melanoma3,8,25   
Ovarian12,26  
Pancreatic16  
Prostate10,27  
Renal3,11   
Non-Hodgkin lymphoma5,28   
Hodgkin lymphoma14,29  
Leukemia30 
Multiple myeloma3,7,31  

*List of tumors represents common types of cancer but is not exhaustive.
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I-O research is constantly evolving

Some of the ongoing research at Bristol-Myers Squibb focuses on:

• Building an understanding of the dynamic mechanisms that govern the immune system's response 
to cancer

• Understanding the role of immune signaling pathways, either alone or in combination, and how 
they can be modulated to restore the body's natural ability to fight cancer

• Identifying I-O biomarkers that clarify the unique interplay between the immune system and the 
tumor and that may help to optimize personalized medicine and improve patient outcomes

• Developing a more comprehensive approach to endpoint assessment, to better recognize the 
potential benefit of Immuno-Oncology research

The potential of I-O research continues to expand, driven by the many patients with advanced 
cancer who await the offer of renewed hope and the potential of a longer life.
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ADCC=antibody-dependent cellular cytotoxicity

AE=adverse event

AHR= aryl hydrocarbon receptor

ALL=acute lymphoblastic leukemia

AML=acute myeloid leukemia

APC=antigen-presenting cell

ATP=adenosine triphosphate

BCR-ABL=breakpoint cluster region-Abselon

BET=bromodomain and extraterminal domain

BRAF=B-raf proto-oncogene

CCR=chemokine (C-C motif) receptor

CML=chronic myelogenous leukemia 

CTLA-4=cytotoxic T-lymphocyte antigen 4

CXCR1=chemokine (C-X-C motif) receptor 1

CXCR2=chemokine (C-X-C motif) receptor 2

DC=dendritic cell

dMMR=mismatch repair deficient

DOR=duration of response

EGFR=epidermal growth factor receptor

Fc=fragment, crystallizable

FucGM1=fucosyl GM1

GEP=gene expression profile

HMGB1=high mobility group box 1 

HRQOL=health-related quality of life

IDO1=indoleamine 2,3-dioxygenase 1

Ig=immunoglobulin

IL=interleukin

IMAR=immune-mediated adverse reaction

I-O=immuno-oncology

ITIM=immunoreceptor tyrosine-based inhibitory motif

KRAS=Kirsten rat sarcoma

LAG-3=lymphocyte-activation gene 3

LSD1=lysine-specific demethylase 1

MAPK=mitogen-activated protein kinase

MDSC=myeloid-derived suppressor cell

MHC=major histocompatibility complex

mRNA=messenger RNA

MSI-H=microsatellite instability-high

MHC=major histocompatibility complex

mRNA=messenger RNA

MSI-H=microsatellite instability-high

NGS=next-generation sequencing

NK=natural killer

NKG2A=NK group 2 member A

NLRP3=nucleotide-binding oligomerization domain-like 
receptor family, pyrin domain containing 3 

ORR=overall response rate

OS=overall survival

PD-1=programmed death receptor-1

PD-L1=programmed death ligand 1

PD-L2=programmed death ligand 2
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PFS=progression-free survival

PGE2=prostaglandin E2 

PRO=patient-reported outcomes 

PS=phosphatidylserine

PSCA=prostate stem cell antigen

SCLC=small cell lung cancer

SIRPα=signal-regulatory protein alpha

SLAMF7=signaling lymphocytic activation molecule 
family member 7

STING=stimulator of interferon genes 

TAM=tumor-associated macrophage

TCR=T-cell receptor

TFS=treatment-free survival

TGF=transforming growth factor

TIGIT=T-cell immunoreceptor with Ig and ITIM domains

TIL=tumor-infiltrating lymphocyte

TIM-3=T-cell immunoglobulin mucin-3

TLR8=toll-like receptor 8

TMB=tumor mutational burden

Treg=regulatory T cell
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