
Bristol Myers Squibb: At the forefront  
of Immuno-Oncology research

Understanding the science  
behind Immuno-Oncology
Using the body’s natural immune response to fight cancer
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Revealing the potential of the 
immune system in cancer

Introduction to the tumor microenvironment and the 
immune response
The immune system is able to recognize foreign threats (nonself) as distinct from normal cells 
(self).1-3 Innate and adaptive immunity act as complementary networks of self-defense against 
foreign threats, such as pathogens and cancer.4 

In cancer, normal cells have mutated into tumor cells and are recognized as nonself by both the 
innate and adaptive immune systems.5,6
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Antitumor activity of the innate and adaptive 
immune responses

Innate immune response
The first line of defense. It rapidly identifies 
and attacks tumor cells without antigen 
specificity.4,5,7 It recognizes activating 
and inhibitory signals from target cells to 
distinguish self from nonself.8-10 NK cells  
are the main effector cells of the innate 
immune system.11,12

Adaptive immune response
An antigen-specific and durable response.4,7 

Once activated, it can be sustained through 
immune memory.13 Cytotoxic T cells  
are effector cells of the adaptive  
immune system.4
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REVEALING THE POTENTIAL OF THE IMMUNE SYSTEM IN CANCER

Key stages of the antitumor immune response
In both the innate and adaptive immune responses, immune cells have the potential to recognize and 
eliminate tumor cells. There are 3 principal stages in this process: 

Presentation
The innate immune  

system rapidly identifies  
and attacks tumor cells. 

Tumor cell death releases 
tumor antigens, which  

can activate the cytotoxic  
T cells of the adaptive 
immune system.14,15

Infiltration 
Tumor antigens and other 

factors attract immune cells 
to the tumor site, where  

they invade and attack.14

Elimination 
Activated cytotoxic T cells 
recognize tumor cells as 

the source of the antigen 
and target them for 

elimination.14

Tumor cells can evade and suppress immune activity
The complex network of activating and inhibitory pathways enables the antitumor immune 
response to detect and eliminate tumor cells at any point in tumor development.16 However, tumors 
seek to evade or suppress the body’s natural ability to fight cancer, and they can evolve at any phase 
of growth to “outsmart” the antitumor immune response.16,17

The tumor microenvironment consists of different cell types that help tumor cells evade antitumor 
immune activity.18,19 As tumors evolve, they can influence the activation and composition of cells 
within the tumor microenvironment.17
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Immune pathways combine to refine response
The 3 stages of the immune response—presentation, infiltration, and elimination—are regulated 
through a network of activating and inhibitory signaling pathways that combine to maintain 
immune balance.3,14,20 Establishing fundamental stages of immune response that are impaired 
within noninflamed tumors is a strategy to improve the broad potential of I-O.

Various components of the immune system and the tumor microenvironment, including APCs, 
immune regulatory cells, stromal cells, and the tumor itself, regulate the ability of effector 
cells to eliminate tumors.3,20-22 Ongoing I-O research at Bristol Myers Squibb is exploring how 
targeting these components, either alone or in combination, may restore the body’s natural 
ability to fight cancer.

Deep insight into tumor-intrinsic signaling and immune biology 
continues to inform and inspire discoveries—enabling the 
development of novel combination therapies.
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Effector-Cell Function23,32-63

PD-1 CTLA-4 LAG-3 TIGIT TIM-3
SLAMF7
NKG2A AHR PSCA

IL-2 OX40 IDO1 IL-12

Tumor Cell Recognition23-31

STING

TLR8

FucGM1

SIRPα

Macrophage Dendritic cell

T cell

Tumor-Intrinsic Pathways64-75

BET LSD1

UPP

Androgen receptor degradation

Folate receptor α (FRα)

Tumor cells

Immunosuppression62,63,76-83

CTLA-4 IL-8

CCR8 TGFβ1 and 3

Treg MDSC TAM

There are multiple emerging pathways under investigation 
for tumor detection and elimination*

*Not a comprehensive list of immune pathways.
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Select pathways that modulate immunosuppression
Some tumors can avoid destruction by thriving in an immunosuppressive environment and 
dampening the immune response. Current research is investigating modulation of pathways  
that regulate immunosuppressive activity in order to increase antitumor response.76,77

IL-8 is a cytokine produced by 
macrophages, monocytes, and 
stromal cells that promotes the 
recruitment of immunosuppressive 
MDSCs and, during the normal 
healing process, activates the 
angiogenic response to generate 
new blood vessels.79,80,89,90

CTLA-4 is an immune 
checkpoint receptor on 
activated T cells and 
Tregs that inhibits T-cell 
activation.62,63,86 Binding of 
CTLA-4 on cytotoxic T cells 
to CD80/86 on APCs inhibits 
T-cell activation.87,88 

Select pathways that modulate tumor cell recognition
Tumors use several mechanisms to avoid detection by the immune system. Current research 
is investigating modulation of pathways, including those involved in antigen presentation and 
phagocytosis, to promote better tumor cell recognition.23,24

STING is an intracellular 
protein expressed in APCs, 
such as DCs, which serves as 
an innate immune activator 
that stimulates APCs to drive 
cytotoxic T-cell activity.25,26 

FucGM1 is a ganglioside 
that is highly expressed 
on the surface of certain 
cancer cells and enables  
cell communication.31,84,85
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Select pathways that modulate effector cell function
Various components of the immune system and tumor microenvironment regulate effector cell ability to 
eliminate tumors. Current research is investigating the following pathways involved in the regulation of 
effector cells in order to enhance their activity.23,32

TIM-3 is an immune checkpoint 
receptor involved in the 
suppression of both innate and 
adaptive immune cells.45,46,100  
It is expressed on the surface of 
a wide variety of immune cells, 
including cytotoxic T cells, Tregs, 
NK cells, and some APCs, such 
as DCs.45,46

TIGIT is an immune checkpoint 
receptor expressed on the surface 
of cytotoxic and memory T cells, 
Tregs, and NK cells.47,98 On all of 
these cells, TIGIT can play a role 
in immune suppression.47,98,99

PD-1 is an immune checkpoint 
receptor on cytotoxic T cells 
that plays a key role in T-cell 
exhaustion and prevention of 
autoimmunity.33-36,91

SLAMF7 is an activating 
receptor on the surface of NK 
cells and other immune cells.44 
When engaged, SLAMF7 
activates NK cells, the rapid 
responders of the immune 
system and the body’s first line 
of defense against cancer.5,101

CTLA-4 is an immune checkpoint  
receptor that, in addition to being 
expressed on activated T cells, 
is also found on Tregs, where it 
is a key driver of their ability to 
suppress the immune response. 
Tumor cells utilize the CTLA-4 
pathway to suppress the immune 
response, decreasing T-cell 
activation and ability to proliferate 
into memory T cells.21,38,62,63,92,93

LAG-3 is an immune checkpoint 
receptor on the surface of both 
activated cytotoxic and regulatory 
T cells.39,40,94 LAG-3 can negatively 
regulate T-cell proliferation and 
promote T-cell exhaustion.95-97

REVEALING THE POTENTIAL OF THE IMMUNE SYSTEM IN CANCER
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IL-2 is an activating receptor 
expressed on the surface of 
immune cells including cytotoxic 
T cells, NK cells, and Tregs.41-43,102 
The interaction of IL-2 with its 
receptor, IL-2R, promotes the 
activation and proliferation of 
various immune cells.42,102

IDO1 is an enzyme expressed  
in tumor cells and APCs.59,60  

It metabolizes tryptophan, an 
amino acid that is essential 
for T-cell survival, into 
immunosuppressive kynurenine, 
which normally acts as a 
counterbalance to suppress T 
cells and prevent overactivation 
of the immune response.59,109-111

OX40 is an activating, 
transmembrane receptor 
protein that is expressed  
on the surface of activated 
cytotoxic T cells and Tregs.103-105  
OX40 helps to create a tumor 
microenvironment more 
favorable to the antitumor 
immune response.106-108

Select tumor-intrinsic pathways
Various signaling and metabolic pathways intrinsic to tumor cells can drive oncogenesis and 
tumor growth. Current research is investigating blocking these pathways in order to promote 
tumor cell death.64,65

LSD1 is a demethylating enzyme 
that potentially plays a role in 
nucleosome remodeling, which 
may regulate genes critical to 
stem cell differentiation and 
cancer development.120-122

BET is a family of proteins  
that are widely expressed  
and are responsible for 
regulating a variety of cellular  
processes.69,116-118 In cancer, they 
upregulate the transcription of 
c-Myc, which is a major factor 
in the regulation of tumor 
proliferation.119

IL-12 is a pro-inflammatory 
cytokine released by APCs and  
B cells.112,113 It increases effector 
T cell and NK activity of the 
innate and adaptive antitumor 
immune response. Antitumor 
immunity can also be promoted 
through IFN-γ production and 
the development of Th1 and 
Th17 cells.112,114,115
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Research is also ongoing to explore potential synergistic 
effects of immunotherapy in combination with 
chemotherapy and/or radiation or targeted therapies
Preclinical studies suggest that chemoradiation combined with immunotherapy may augment the 
antitumor response by generating cytotoxic T cells against tumor cells.128-131 

Combining immunotherapy with the blockade of pathways essential for tumor survival and growth 
may increase antitumor response.132,133

Preclinical studies suggest modulating multiple immune 
pathways may augment antitumor activity23,32,92*

REVEALING THE POTENTIAL OF THE IMMUNE SYSTEM IN CANCER

EXHAUSTED  
T CELL

NAÏVE 
T CELL

PD-1 LAG-3 TIGIT

CTLA-4

CTLA-4

TIM-3

EXAMPLE MODULATOR

Creating long-term immunity123

Immune activation and 
proliferation42,87,123,124

Ongoing immune stimulation87,125-127

Restoring immune response87,125-127

EXAMPLE MODULATORS

EXAMPLE MODULATORS

MEMORY 
 T CELL

EFFECTOR  
T CELL

IL-2

*Image intended to provide examples of pathways that may promote/inhibit T cells and long-term immunity.
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Ongoing research aims to understand how combining 
immunotherapies with other treatment modalities may 
enhance an antitumor response77,134

Research is ongoing to assess the possibility for improved survival with 
longer duration of response for more patients with combination A + B

Modality A may have improved survival compared to control but lacks 
duration of response

Modality B can have improved survival and longer duration of response  
in a fraction of patients

Time

Su
rv

iv
al

Control

Modality A

Modality B

Modality A + B

Modulating a combination of signaling pathways can more 
efficiently promote antitumor activity than either pathway 
alone, as suggested by preclinical data.135-139

Hypothetical graph illustrating a scientific concept. This does not represent data or intend to directly predict clinical outcomes.
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Biomarkers in I-O research
With a focus on precision medicine, our research and development program aims to rapidly translate 
research into novel regimens to accelerate delivery of the right treatment, for the right patient, at the 
right time. Biomarkers are biologic molecules, cells, or processes found in tissues or body fluids (such as 
blood) that are a sign of a normal or abnormal process or disease.140,141

I-O biomarkers are a class of biomarker that can help evaluate an active antitumor immune 
response within the body.142 I-O biomarkers can be prognostic, predictive, or pharmacodynamic, or 
a combination.143-146

Prognostic biomarkers may identify the likelihood of a clinical event, such as disease progression, 
disease recurrence, or death, independent of the therapy received.143,144

Predictive biomarkers may identify whether individuals are more likely to experience a favorable or 
unfavorable response to treatment.143,144

Pharmacodynamic biomarkers may show that a biologic response has occurred in an individual 
who has received treatment.144,145

Discovering the possibilities of  
Immuno-Oncology biomarkers

As we continue to learn more about cancer biology—and with 
advancements in high-throughput technologies—the goal of 
I-O biomarker testing will be to provide actionable information 
toward developing personalized I-O therapy, including  
combinations with other treatment modalities.147,148
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Bristol Myers Squibb aims to identify clinical characteristics and I-O 
biomarkers to determine the patient populations most likely to benefit  
from I-O therapy.147,149 I-O biomarker research aims to further characterize 
the unique interplay between the immune system and tumor cells in  
the following categories*:

As I-O biomarkers are dynamic and complex, the presence or absence of any single I-O 
biomarker may not provide a complete understanding of the diverse interactions occurring within 
the tumor microenvironment.149,158,159

A composite I-O biomarker evaluation may provide a more  
comprehensive assessment of immune status.149

Circulating biomarkers150-153

 y IL-8
 y ctDNA
 y MRD

Immune modulators154,155

 y TILs
 y Tregs
 y MDSCs

 y PD-L1
 y LAG-3

Digital technologies156,157

 y Digital pathology
 y AI-based signatures

Genomic features154,155

 y TMB
 y MSI-H/dMMR
 y Immune gene signatures

*Not a comprehensive list of biomarkers.
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I-O is a different approach that fights cancer by targeting 
the immune system 
Treatment approaches currently approved to fight cancer include chemotherapy, radiation, 
targeted therapy, and immunotherapy. Radiation, chemotherapy, and targeted therapy are all 
directed toward killing tumor cells.160-163 

In contrast, I-O seeks to activate the body’s natural immune response to fight cancer. This is a 
fundamentally different approach to cancer treatment.164

With this approach come unique considerations and distinctive characteristics that continue to 
be researched, such as:

•    Immune responses having the potential to deepen and sustain over time

•    Utility in earlier stages of cancer

•       Comprehensive endpoint considerations

•    Unique patterns of response, such as pseudoprogression

•       Immune-mediated adverse reactions

•    Resistance to immunotherapy, which can be present at the start of treatment or form over time

Evolving clinical expectations  
in Immuno-Oncology

Surgery Radiation Chemotherapy
Targeted 
TherapyImmuno-Oncology

Immune system Cancer cell
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Cycle propagates and perpetuates

Memory cell

APC

Tumor cell death can  
release new antigens into 
tumor microenvironment

New antigens attract  
and activate new tumor 
antigen-specific T cells

Some cytotoxic T cells mature 
into memory T cells and provide 

long-term immunity

Cytotoxic T cells recognize 
and kill tumor cells

Immune responses have the potential to deepen and be 
sustained over time 
The immune response evolves and expands over time by constantly recognizing and 
remembering tumor antigens. This ability—to propagate and perpetuate—suggests the 
adaptive nature of the immune response.14

Immune responses are dynamic and have the potential to improve and deepen over time.165,166

As the immune response continues to expand, some cytotoxic 
T cells mature into memory T cells that may provide long-term 
immune protection, even if the original stimulus is no longer 
present.13,166,167

Cytotoxic T cell

Tumor cell
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EVOLVING CLINICAL EXPECTATIONS IN IMMUNO-ONCOLOGY

Immune cells Dying tumor cellImmunotherapy Resection marginTumor cell

Primary
tumor

Potential 
enhancement
of infiltration 

and activation 
of immune cells

Potential 
immunogenic

cell death Surgery

Immune cells may attack 
remaining tumor cells and 

some healthy cells 

Primary
tumor Surgery

Immune cells may attack 
remaining tumor cells and 

some healthy cells 
Immunotherapy 

administered

In the adjuvant setting, primed T cells, specific to tumor antigens, may develop into 
protective memory T cells after surgical excision of the primary tumor.172

Immune cells Dying tumor cellImmunotherapy Resection marginTumor cell

Primary
tumor

Potential 
enhancement
of infiltration 

and activation 
of immune cells

Potential 
immunogenic

cell death Surgery

Immune cells may attack 
remaining tumor cells and 

some healthy cells 

Primary
tumor Surgery

Immune cells may attack 
remaining tumor cells and 

some healthy cells 
Immunotherapy 

administered

Preclinical studies aim to explore the potential of immunotherapy 
in earlier stages of cancer.169-171,173,174

In earlier stages of cancer, the immune system may be 
more intact and responsive168

In the neoadjuvant setting, the presence of tumor cells may allow for T cell priming while 
tumor antigens are abundant, potentially leading to an effective and prolonged antitumor 
immune response.169-171
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Surrogate endpoints for survival may help to assess the 
efficacy of treatment in the neoadjuvant, adjuvant, and 
perioperative settings175-179

While OS is a common endpoint in oncology, it requires a longer follow-up period.175  
Surrogate endpoints may potentially correlate with OS.180-183

Some common surrogate endpoints used in earlier stages of cancer may include EFS  
and DFS/RFS.175,177,180,184-187

According to research in the neoadjuvant setting, pCR rate and MPR rate may be emerging 
surrogate endpoints that evaluate residual tumor in a specimen.176,178,179

BMS is investigating OS and surrogate endpoints to assess 
treatment efficacy in earlier stages of cancer.189-196 

EFS, DFS, and RFS are 
used to assess treatment 

efficacy175,177,180,184-187

pCR rate and MPR rate evaluate pathologic 
response and reflect residual viable tumor in a 

resected specimen176,178,179

Assess for recurrence

Assess for recurrence
Surgery

Assess for progression

Assess for progression

Adjuvant  
setting

Neoadjuvant  
setting

Perioperative  
setting

pCR and MPR: No residual 
tumor cells (pCR) or ≤10% 
tumor cells (MPR) at the 
primary tumor site after 
neoadjuvant treatment.176,182

EFS: Time from patient 
randomization until any event, 
including progression of disease, 
recurrence, or death irrespective 
of cause.175,178

DFS/RFS: Length of time 
patient survives after primary 
treatment without any signs 
or symptoms of the cancer for 
which they were treated.181,182,188

DFS 
RFS

EFS

EFS

pCR 
MPR

pCR 
MPR

Systemic therapy

Systemic therapy

Systemic therapy

Systemic therapy
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Other endpoint considerations for I-O research
The criteria currently used to assess potential benefit of cancer therapies are based on surgery, 
radiation therapy, and chemotherapy.14 However, for I-O—a different way to fight cancer—a more 
comprehensive approach to endpoint assessment may be needed to recognize potential benefit.197-201

• Overall survival (OS), progression-free survival (PFS), and overall response rate (ORR) are among 
endpoints used to measure outcomes in oncology research. OS is the gold standard to assess 
therapeutic benefit when possible202,203

• In addition, key measures of response are magnitude (size)—measured as the proportion of patients 
with a predefined decrease in tumor burden, called the ORR—and duration (time)—assessed as the 
time from initial tumor response to disease progression, called the duration of response (DOR)202

• Finally, other measures such as treatment-free survival (TFS) and patient-reported outcomes (PROs) 
may also integrate a patient’s QOL. TFS measures the time a patient spends off treatment while 
incorporating QOL and toxicities experienced.204,205 PROs evaluate the impact of treatment on QOL 
based on the patient’s own account206,207

Assessment of these measures in combination can provide a broad and comprehensive picture of the 
differences between the investigational arm and the control arm with respect to PFS and OS.198-200,208

Assess potential benefit at specific  
time points of interests

Assess potential benefit across  
the duration of the trial

OS/PFS

Time Point Analyses 
Estimate the presence or  

absence of sustained benefit  
at time points of interest  

(eg, 24 months)

Hazard Ratio/Relative  
Risk Reduction 

Measures the magnitude  
of the difference between 

the two curves of a  
Kaplan-Meier plot

Median Duration 
The time at which 50%  
of patients have either 

progressed or died 

Assessing multiple measures can illustrate the full scope of  
clinical benefit.198-200,208,209

EVOLVING CLINICAL EXPECTATIONS IN IMMUNO-ONCOLOGY
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Baseline assessment

Disease progression

Pseudoprogression (nonconventional response)

First assessment Later assessment

Pseudoprogression may reflect development of  
antitumor immunity
The nature of the antitumor immune response can create the appearance of disease progression, 
either as tumor growth or appearance of new lesions.210,211 This is known as pseudoprogression:  
this does not reflect tumor cell growth but may be misclassified as disease progression.210,212,213

Tumors may appear to grow or new lesions may appear when immune cells infiltrate the tumor 
site.210 Due to the time required to mount an adaptive immune response, pseudoprogression may 
also reflect continued tumor growth until a sufficient response develops.210,214
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Pseudoprogression should be considered until disease 
progression can be confirmed
While uncommon, pseudoprogression is an important consideration when evaluating response to 
I-O therapies.214 Histologic confirmation is not always possible, but close monitoring of the following 
factors may help identify pseudoprogression210,213,215:

Disease progression Pseudoprogression 
(nonconventional response)

Performance status Deterioration of performance Remains stable 
or improves

Systemic symptoms Worsen May or may 
not improve

Symptoms of tumor 
enlargement

Present May or may 
not be present

Tumor burden

Baseline

New lesions

Increase

Appear and increase in size

Initial increase followed 
by a response

Appear then remain stable 
and/or subsequently respond

Biopsy may reveal Evidence of tumor growth Evidence of immune-cell 
infiltration

EVOLVING CLINICAL EXPECTATIONS IN IMMUNO-ONCOLOGY
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Immune-mediated adverse reactions 
I-O therapies that modulate immune pathways may enable the immune system to attack healthy 
cells along with tumor cells. The effects are known as immune-mediated adverse reactions.14,216-219

When managing complications of immune-mediated adverse reactions, please consider:

•   Patients, caregivers, and physicians should be educated to remain vigilant throughout and after 
I-O treatment to potentially minimize complications, some of which may be life-threatening219,220

•   Treatment algorithms are available for use by healthcare providers to assist them in managing 
immune-mediated adverse reactions221,222

•    Recent guidelines have been published that provide consensus recommendations for the 
management of immune-mediated adverse reactions.222-224 Specific guidance for managing 
immune-mediated adverse reactions for an individual product can be found in the accompanying 
FDA-approved Prescribing Information225

As research in immunotherapy advances and more data are 
made available, understanding and effective management of 
immune-mediated adverse reactions will evolve.225
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Resistance to immunotherapy can be present  
at the start of treatment or form over time 
Advances in immunotherapy have resulted in enhanced antitumor responses. A significant challenge 
is the development of resistant disease and disease progression during or after therapy.17,226

As tumors evolve over time, they can influence the activation and composition of cells within 
the tumor microenvironment.17,226 Some tumors do not respond from the beginning of treatment 
with immunotherapies, and this is termed “primary resistance.” In contrast, “acquired resistance” 
describes tumors that initially respond to immunotherapies but then fail to respond after a period  
of time.227

Identification of mechanisms of immunotherapy resistance is an area of research that will inform 
appropriate treatment options for patients. 

Bristol Myers Squibb is committed to understanding the tumor 
immune response and exploring mechanisms underlying 
primary and secondary acquired resistance.

EVOLVING CLINICAL EXPECTATIONS IN IMMUNO-ONCOLOGY
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Presentation
There is a broad range of tumors that are traditionally  
defined by high rates of mutations.230 These mutations create 
neoantigens that can be recognized by the immune system, 
activating an antitumor immune response.231

Infiltration 
Tumor-infiltrating immune cells are present in the tumor 
microenvironment. Their presence demonstrates their capacity  
to identify and migrate to tumor cells.232-245

Elimination 
Early in their development, some tumors display evidence of 
spontaneous regression. This suggests that the immune system 
is able to recognize and eliminate some tumor cells and supports 
the concept that the body’s own immune system has the ability 
to induce an antitumor response against cancer.246

Depth of evidence for the immune response to cancer
Both solid tumors and hematologic malignancies are able to induce an immune response that 
can regulate their initial growth. This ability is known as tumor immunogenicity.228,229 The body 
is able to recognize and attack cancer through the following stages of immune response:

Realizing the potential of  
Immuno-Oncology research 
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REALIZING THE POTENTIAL OF IMMUNO-ONCOLOGY RESEARCH

Tumor type*

Evidence for tumor immunogenicity 

Presentation
Presence of  

somatic  
mutations

Infiltration 
Evidence of 
immune-cell  
infiltration

Elimination
Evidence of 

spontaneous 
regression

Bladder230,242  

Breast244,247  

Colorectal243  

Gastric/esophageal235,248,249  

Glioblastoma231,233,250  

Head and neck236,251  

Hepatocellular240,252  

Lung230,235  

Melanoma230,235,246   

Ovarian239,253  

Pancreatic243  

Prostate237,254  

Renal230,238   

Non-Hodgkin  
lymphoma232,255,256   

Hodgkin lymphoma241,257  

Leukemia258 

Multiple myeloma234,259  

Broad potential of I-O research 
Evidence for tumor immunogenicity across a wide range of solid tumors and hematologic  
malignancies provides the rationale for the breadth of I-O research across tumor types173:

*List of tumors represents common types of cancer but is not exhaustive.
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I-O research is constantly evolving

For more detailed information on the science behind I-O, please visit IOHCP.com.

Some of the ongoing research at  
Bristol Myers Squibb focuses on:
•   Building an understanding of the dynamic mechanisms that 

govern the immune system’s response to cancer

•  Understanding the role of immune signaling pathways, either 
alone or in combination, and how they can be modulated to 
restore the body’s natural ability to fight cancer

•   Identifying I-O biomarkers that clarify the unique interplay 
between the immune system and the tumor that may help to 
optimize personalized medicine and improve patient outcomes

•   Developing a more comprehensive approach to endpoint 
assessment, to better recognize the potential benefit of  
I-O research

The potential of I-O research 
continues to expand, driven by the 
many patients with advanced cancer 
who await the offer of renewed hope 
and the potential of a longer life.
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AHR=aryl hydrocarbon receptor

AI=artificial intelligence

APC=antigen-presenting cell

BET=bromodomain and extraterminal domain

CCR8=chemokine (C-C motif) receptor 8

ctDNA= circulating tumor DNA

CTLA-4=cytotoxic T-lymphocyte antigen 4

DC=dendritic cell

DFS=disease-free survival

dMMR=mismatch repair deficient

DOR=duration of response

EFS=event-free survival

FucGM1=fucosyl GM1

IDO1=indoleamine 2,3-dioxygenase-1

IFN-γ=interferon-gamma

IL-2=interleukin-2

IL-2R=interleukin-2 receptor

IL-8=interleukin-8

IL-12=interleukin-12

I-O=Immuno-Oncology

LAG-3=lymphocyte-activation gene 3

LSD1=lysine-specific demethylase 1

MDSC=myeloid-derived suppressor cell

MPR=major pathologic response

MRD=minimal residual disease

MSI-H=microsatellite instability-high

NK=natural killer

NKG2A=natural killer cell protein group 2-A

ORR=overall response rate

OS=overall survival

pCR=pathologic complete response

PD-1=programmed death receptor-1

PD-L1=programmed death ligand 1

PFS=progression-free survival

PRO=patient-reported outcome

PSCA=prostate stem cell antigen

QOL=quality of life

RFS=recurrence-free survival

SIRPα=signal-regulatory protein alpha

SLAMF7=signaling lymphocytic activation 
molecule family member 7

STING=stimulator of interferon genes

TAM=tumor-associated macrophage

TFS=treatment-free survival

TGFβ1=transforming growth factor beta 1

TIGIT=T-cell immunoreceptor with Ig and ITIM 
domains

TIL=tumor-infiltrating lymphocyte

TIM-3=T-cell immunoglobulin mucin-3

TLR8=toll-like receptor 8

TMB=tumor mutational burden

Treg=regulatory T cell

UPP=uridine phosphorylase
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